SEMESTER-II

COURSE 3: DIFFERENTIAL EQUATIONS

Theory Credits: 4 5 hrs/week

Course Outcomes

After successful completion of this course, the student will be able to

- 1. solve first order first degree linear differential equations.
- 2. convert a non-exact homogeneous equation to exact differential equation by using an integrating factor.
- 3. know the methods of finding solution of a differential equation of first order but not of first degree.
- 4. solve higher-order linear differential equations for both homogeneous and non-homogeneous, with constant coefficients.
- 5. understand and apply the appropriate methods for solving higher order differential equations.

Course Content

Unit – 1

Differential Equations of first order and first degree

Linear Differential Equations – Bernoulli's Equations - Exact Differential Equations –Integrating factors - Equations reducible to Exact Equations by Integrating Factors -

i) Inspection Method ii) $\frac{1}{Mx + Ny}$ iii) $\frac{1}{Mx - Ny}$

Unit – 2

Differential Equations of first order but not of first degree

Equations solvable for p, Equations solvable for y, Equations solvable for x – Clairaut's equation - Orthogonal Trajectories: Cartesian and Polar forms.

Unit - 3

Higher order linear differential equations

Solutions of homogeneous linear differential equations of order n with constant coefficients -Solutions of non-homogeneous linear differential equations with constant coefficients by means of polynomial operators

(i) $Q(x) = e^{ax}$ (ii) Q(x) = Sin ax (or) Cos ax

Unit – 4

Higher order linear differential equations (continued.)

Solution to a non-homogeneous linear differential equation with constant coefficients P.I. of f(D)y = Q when $Q = bx^k$ P.I. of f(D)y = Q when $Q = e^{ax}V$, where V is a function of x P.I. of f(D)y = Q when Q = xV, where V is a function of x

Unit - 5

Higher order linear differential equations with non-constant coefficients

Linear differential Equations with non-constant coefficients; Cauchy-Euler Equation; Legendre Equation; Method of variation of parameters

Activities

Seminar/ Quiz/ Assignments/ Applications of Differential Equations to Real life Problem /Problem Solving Sessions.

Text Book

Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Pvt. Ltd, New Delhi-Second edition.

Reference Books

1. Ordinary and Partial Differential Equations by Dr. M.D. Raisinghania, published by S. Chand &Company, New Delhi.

2. Differential Equations with applications and programs – S. Balachandra Rao & HR Anuradha-Universities Press.

3. Differential Equations -Srinivas Vangala&Madhu Rajesh, published by Spectrum University Press.

SEMESTER-II

COURSE 4: ANALYTICAL SOLID GEOMETRY

Theory

Credits: 4

5 hrs/week

Course Outcomes

After successful completion of this course, the student will be able to

- 1. understand planes and system of planes
- 2. know the detailed idea of lines
- 3. understand spheres and their properties
- 4. know system of spheres and coaxial system of spheres
- 5. understand various types of cones

Course Content

Unit – 1

The Plane

Equation of plane in terms of its intercepts on the axis - Equations of the plane through the given points - Length of the perpendicular from a given point to a given plane - Bisectors of angles between two planes - Combined equation of two planes - Orthogonal projection on a plane.

Unit – 2

The Line

Equation of a line - Angle between a line and a plane - The condition that a given line may lie in a given plane - The condition that two given lines are coplanar - Number of arbitrary constants in the equations of straight line - Sets of conditions which determine a line - The shortest distance between two lines - The length and equations of the line of shortest distance between two straight lines - Length of the perpendicular from a given point to a given line.

Unit – 3

The Sphere

Definition and equation of the sphere - Equation of the sphere through four given points - Plane sections of a sphere - Intersection of two spheres - Equation of a circle - Sphere through a given circle - Intersection of a sphere and a line - Power of a point - Tangent plane - Plane of contact; Polar plane - Pole of a Plane - Conjugate points - Conjugate planes.

Unit – 4

Spheres (continued)

Angle of intersection of two spheres - Conditions for two spheres to be orthogonal - Radical plane; Coaxial system of spheres - Simplified from of the equation of two spheres.

Unit – 5

Cones

Definitions of a cone – vertex, guiding curve and generators - Equation of the cone with a given vertex and guiding curve - Equations of cones with vertex at origin are homogenous - Condition that the general equation of the second degree should represent a cone - Enveloping cone of a sphere - Right circular cone - Equation of the right circular cone with a given vertex, axis and semi vertical angle.

Activities

Seminar/ Quiz/ Assignments/Three dimensional analytical Solid geometry and its applications/ Problem Solving Sessions.

Text Book

Analytical Solid Geometry by Shanti Narayan and P.K. Mittal, published by S. Chand & Company Ltd. 7th Edition.

Reference Books

- 1. A text Book of Analytical Geometry of Three Dimensions, by P.K. Jain and Khaleel Ahmed, published by Wiley Eastern Ltd., 1999.
- 2. Co-ordinate Geometry of two and three dimensions by P. Balasubrahmanyam, K.Y. Subrahmanyam, G.R. Venkataraman published by TataMcGraw -Hill Publishers.
- 3. Solid Geometry by B. Rama Bhupal Reddy, published by Spectrum University Press.
